首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126166篇
  免费   12393篇
  国内免费   20993篇
化学   104501篇
晶体学   2959篇
力学   3546篇
综合类   1439篇
数学   14460篇
物理学   32647篇
  2024年   117篇
  2023年   1772篇
  2022年   2224篇
  2021年   3980篇
  2020年   4579篇
  2019年   4312篇
  2018年   3584篇
  2017年   4393篇
  2016年   4824篇
  2015年   4399篇
  2014年   5816篇
  2013年   10531篇
  2012年   7394篇
  2011年   8223篇
  2010年   7030篇
  2009年   8495篇
  2008年   8396篇
  2007年   8632篇
  2006年   7643篇
  2005年   6548篇
  2004年   6271篇
  2003年   5297篇
  2002年   4359篇
  2001年   3735篇
  2000年   3171篇
  1999年   2500篇
  1998年   2227篇
  1997年   1947篇
  1996年   1891篇
  1995年   1884篇
  1994年   1740篇
  1993年   1497篇
  1992年   1393篇
  1991年   966篇
  1990年   740篇
  1989年   652篇
  1988年   626篇
  1987年   465篇
  1986年   436篇
  1985年   515篇
  1984年   394篇
  1983年   213篇
  1982年   432篇
  1981年   616篇
  1980年   540篇
  1979年   551篇
  1978年   438篇
  1977年   335篇
  1976年   287篇
  1973年   190篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
991.
This work presents quantification of proanthocyanidins (PAs) isolated from grapevine using disposable screen-printed carbon electrodes (SPCE). Procyanidin B2 (B2) used as a model to investigate the electrochemical characteristics of complicated PAs structures in Britton Robinson buffer solution using cyclic voltammetry and square wave voltammetry. B2 exhibits a well-defined reversible redox wave at +0.49 V vs. Ag/AgCl. Significantly, the B2 was determined over a linear concentration range of 3.45–34.6 μM with a detection limit of 2.07 μM. The SPCE was used to analyze PAs in grapevine samples, and the results were consistent with those obtained using Folin-Ciocalteu standard method.  相似文献   
992.
Simultaneous application of multiple sinusoidal waveforms perturbations superimposed onto DC staircase step significantly enriches current response. The measured current is characterized by a matrix of data rather than a conventional voltammetric output in a form of a vector. This increase of the dimensionality of the current response and therefore the wealth of analytical information is achieved without compromising the time of analysis. The natural approach for compression of such data and extraction of relevant information is by utilizing multi-way chemometric decomposition techniques. An electroplating solution presents a very challenging analyte for electroanalysis as its constituents interact synergistically with each other during both the plating process and its simulation during electroanalysis. For some components the mechanism is not entirely understood. Therefore, the only way to benefit from the analytical data is by employing soft modeling. The electrode processes involving additives rely heavily on adsorption and, indirectly, on electron transfer kinetics for which AC voltammetry is an analytical technique capable of delivering informative signals. This paper presents a rigorous universal method for calculating and validating an exemplary multi-way calibration of a leveler component in a copper electroplating bath used in the semiconductor industry. The method presented employs comparatively Parallel Factor Analysis coupled with Inverse Least Squares Regression and multi-linear Partial Least Squares. The calibration training set consists of multi-frequency AC voltammetric data subjected to pretreatments aiming to select informative independent variables and exclude outliers.  相似文献   
993.
Hybrid composites ZnO/PANI were facily synthesized by a sonication process at room temperature. This procedure is non-expensive, time/energy saving and environmentally safe. The as-prepared ZnO/PANI were characterized by FTIR, UV-vis spectroscopies and SEM in order to investigate the structure and morphology of the studied composites. The samples were used to modify carbon paste electrode (CPE) in order to develop electrochemical biosensors (ZnO/PANI/CPE). The sensing properties of the nanoparticles were evaluated for dopamine, ascorbic acid and uric acid non-enzymatic detection. The effect of percentage of polyaniline in the composites and the effect of calcination on the biosensor's response were also examined in the present study. It was revealed that the existence of PANI in ZnO/PANI/CPE largely enhanced the electroactive surface area and therefore the sensitivity for electrochemical sensing. A good electrochemical behavior was noted for ZnO/40 wt% PANI-cal/CPE modified electrode toward DA, AA and UA oxidation. The electroactive surface area of the previously mentioned modified electrode (0.235 cm2) was two times higher than that of the bare electrode (0.117 cm2). The liner relationships between current intensities and concentrations were found to be 0.01–1.4 mM, 0.1–1.3 mM and 0.01–0.12 mM, with detection limit of 0.029 mM, 0.063 mM and 0.007 mM, for DA, AA and UA respectively. In the mixtures of ascorbic acid (AA), dopamine (DA) uric acid (UA) and glucose (Glu) the sensor showed high selectivity of DA with low interference of ascorbic acid by a current change of 14 %. The as-prepared ZnO/PANI/CPE biosensor displayed a good reproducibility and stability.  相似文献   
994.
The development of selective and simple methods for the determination of different analytes is of great interest. This is the first time to show the applicability of graphene oxide-chitosan (GO-CS) nanocomposite for designing an electrochemical nanosensor for determination of Amlodipine, Valsartan, and Hydrochlorothiazide, simultaneously. Differential pulse voltammetrics current of AML, HCT, and VAL increased linearly in the ranges of 0.1–110, 0.1–110, and 1–230 μM with LOD of 5.5×10−2, 3.5×10−2 and 8.6×10−2 μM, respectively. Finally, GO-CS/GCE was used for the detection of these drugs in commercial tablets and compared with the reference method (HPLC).  相似文献   
995.
吴炜星  王莹 《电化学》2023,29(1):2215004-46
由于巨大的潜在市场,乙烯的电化学氧化受到愈来愈多的关注。目前,主流的电化学氧化法仍以依赖于氧化还原媒介的介导氧化法为主,而这些媒介的使用在电解过程中产生大量的腐蚀性中间体,使其实际应用受到阻碍。直接电氧化法可有效规避此问题,但又受到低活性和低选择性的限制。在本工作中,我们针对目前最先进的钯催化直接氧化体系,在中性条件下开展了一系列电化学研究,以对该过程的机理获取更深入的认识。在氮气和乙烯氛围下,钯电极的循环伏安谱图有显著区别。我们发现电解过程中生成的Pd(Ⅱ)物种在乙烯氛围下可绕过原本的电化学还原路径,通过一个化学步还原为Pd(0),因此可能是乙烯氧化的活性位点。Pd(Ⅱ)物种所对应的还原峰也因此可作为乙烯吸附的数量的指标。通过电化学脉冲序列的设计,我们在钯催化剂上识别了两种具有不同吸附强度的乙烯,其强、弱吸附模式所对应的电荷转移比例约为0.3:1。弱吸附的乙烯在钯电极表面表现出可逆的吸脱附行为,而具有强吸附模式的乙烯无法通过物理过程脱附,可能指向到乙烯深度氧化过程。这项工作为进一步设计高性能乙烯直接电氧化催化剂提供了设计思路和方向。  相似文献   
996.
An overall carbon-neutral CO2 electroreduction requires enhanced conversion efficiency and intensified functionality of CO2-derived products to balance the carbon footprint from CO2 electroreduction against fixed CO2. A liquid Sn cathode is herein introduced into electrochemical reduction of CO2 in molten salts to fabricate core–shell Sn−C spheres (Sn@C). An in situ generated Li2SnO3/C directs a self-template formation of Sn@C. Benefitting from the accelerated reaction kinetics from the liquid Sn cathode and the core–shell structure of Sn@C, a CO2-fixation current efficiency higher than 84 % and a high reversible lithium-storage capacity of Sn@C are achieved. The versatility of this strategy is demonstrated by other low melting point metals, such as Zn and Bi. This process integrates energy-efficient CO2 conversion and template-free fabrication of value-added metal-carbon, achieving an overall carbon-neutral electrochemical reduction of CO2.  相似文献   
997.
It is highly desired to achieve controllable product selectivity in CO2 hydrogenation. Herein, we report light-induced switching of reaction pathways of CO2 hydrogenation towards CH3OH production over actomically dispersed Co decorated Pt@UiO-66-NH2. CO, being the main product in the reverse water gas shift (RWGS) pathway under thermocatalysis condition, is switched to CH3OH via the formate pathway with the assistance of light irradiation. Impressively, the space-time yield of CH3OH in photo-assisted thermocatalysis (1916.3 μmol gcat−1 h−1) is about 7.8 times higher than that without light at 240 °C and 1.5 MPa. Mechanism investigation indicates that upon light irradiation, excited UiO-66-NH2 can transfer electrons to Pt nanoparticles and Co sites, which can efficiently catalyze the critical elementary steps (i.e., CO2-to-*HCOO conversion), thus suppressing the RWGS pathway to achieve a high CH3OH selectivity.  相似文献   
998.
Tuning the coordination environments of metal single atoms (M1) in single-atom catalysts has shown large impacts on catalytic activity and stability but often barely on selectivity in thermocatalysis. Here, we report that simultaneously regulating both Rh1 atoms and ZrO2 support with alkali ions (e.g., Na) enables efficient switching of the reaction products from nearly 100 % CH4 to above 99 % CO in CO2 hydrogenation in a wide temperature range (240–440 °C) along with a record high activity of 9.4 molCO gRh−1 h−1 at 300 °C and long-term stability. In situ spectroscopic characterization and theoretical calculations unveil that alkali ions on ZrO2 change the surface intermediate from formate to carboxy species during CO2 activation, thus leading to exclusive CO formation. Meanwhile, alkali ions also reinforce the electronic Rh1-support interactions, endowing the Rh1 atoms more electron deficient, which improves the stability against sintering and inhibits deep hydrogenation of CO to CH4.  相似文献   
999.
Using sunlight to produce valuable chemicals and fuels from carbon dioxide (CO2), i.e., artificial photosynthesis (AP) is a promising strategy to achieve solar energy storage and a negative carbon cycle. However, selective synthesis of C2 compounds with a high CO2 conversion rate remains challenging for current AP technologies. We performed CO2 photoelectroreduction over a graphene/silicon carbide (SiC) catalyst under simulated solar irradiation with ethanol (C2H5OH) selectivity of>99 % and a CO2 conversion rate of up to 17.1 mmol gcat−1 h−1 with sustained performance. Experimental and theoretical investigations indicated an optimal interfacial layer to facilitate the transfer of photogenerated electrons from the SiC substrate to the few-layer graphene overlayer, which also favored an efficient CO2 to C2H5OH conversion pathway.  相似文献   
1000.
Photocatalytic conversion of CO2 is of great interest but it often suffers sluggish oxidation half reaction and undesired by-products. Here, we report for the first the simultaneous co-photocatalytic CO2 reduction and ethanol oxidation towards one identical value-added CH3CHO product on a rubidium and potassium co-modified carbon nitride (CN-KRb). The CN-KRb offers a record photocatalytic activity of 1212.3 μmol h−1g−1 with a high selectivity of 93.3 % for CH3CHO production, outperforming all the state-of-art CO2 photocatalysts. It is disclosed that the introduced Rb boosts the *OHCCHO fromation and facilitates the CH3CHO desorption, while K promotes ethanol adsorption and activation. Moreover, the H+ stemming from ethanol oxidation is confirmed to participate in the CO2 reduction process, endowing near ideal overall atomic economy. This work provides a new strategy for effective use of the photoexcited electron and hole for high selective and sustainable conversion of CO2 paired with oxidation reaction into identical product.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号